Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel IAL
In Chemistry (WCH04) Paper 01
General Principles of Chemistry II -
Transition Metals and Organic Chemistry

edexcel ${ }^{\text {itixi}}$

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WCH04_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

- This mark scheme provides a list of acceptable answers for this paper. Candidates will receive credit for all correct responses but will be penalised if they give more than one answer where only one is required (e.g. putting an additional cross in a set of boxes). If a candidate produces more written answers than the required number (two instead of one, three instead of two etc), only the first answers will be accepted. Free responses are marked for the effective communication of the correct answer rather than for quality of language but it is possible that, on some occasions, the quality of English or poor presentation can impede communication and loose candidate marks. It is sometimes possible for a candidate to produce a written response that does not feature in the mark scheme but which is nevertheless correct. If this were to occur, an examiner would, of course, give full credit to that answer.
- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
$\mathbf{1}$	1. The only correct answer is C A is not correct because because the acid forms of 1 and 2 do not correspond to the base forms of 1 and 2	(1)
	B is not correct because because the acid forms of 1 and 2 do not correspond to the base forms of 1 and 2	
D is not correct because because the acid forms of 1 and 2 do not correspond to the base forms of 1 and 2		

Question Number	Answer	Mark
$\mathbf{2}$	2. The only correct answer is C	(1)
	\boldsymbol{A} is not correct because it is acidic	
	\boldsymbol{B} is not correct because it is acidic	
	\boldsymbol{D} is not correct because it is acidic	

Question Number	Answer	Mark
$\mathbf{3}$	3. The only correct answer is A B is not correct because the pH of the substances are not as accurately known	(1)
C is not correct because the pH of the substances are not as accurately known	D is not correct because two solutions ensure the meter is calibrated across a pH range	

Question Number	Answer	Mark
4(a)	4(a). The only correct answer is D	(1)
	\boldsymbol{A} is not correct because has an incorrect sign	
	\boldsymbol{B} is not correct because are incorrect values	
\boldsymbol{C} is not correct because are incorrect values		

Question Number	Answer	Mark
4(b)	4(b). The only correct answer is C	(1)
	\boldsymbol{A} is not correct because the value is incorrect	
	\boldsymbol{B} is not correct because the value is incorrect	
	D is not correct because the value is incorrect	

Question Number	Answer	Mark
4(c)	4(c). The only correct answer is \mathbf{A}	(1)
	\boldsymbol{B} is not correct because the value is incorrect	
	\boldsymbol{C} is not correct because the value is incorrect	
	\boldsymbol{D} is not correct because the value is incorrect	

Question Number	Answer	Mark
4(d)	4(d). The only correct answer is B	(1)
	\boldsymbol{A} is not correct because the value is incorrect	
\boldsymbol{C} is not correct because the value is incorrect		
\boldsymbol{D} is not correct because the value is incorrect		

Question Number	Answer	Mark
$\mathbf{5 (a)}$	$\mathbf{5 (a) .}$ The only correct answer is A \boldsymbol{B} is not correct because raising the pressure increases the rate of a gas reaction	(1)
C is not correct because there is no change to the equilibrium yield \boldsymbol{D} is not correct because raising the pressure increases the rate of a gas reaction		

Question Number	Answer	Mark		
$\mathbf{5 (b)}$	5(b). The only correct answer is D \boldsymbol{A} is not correct because as the ΔH expressions are wrong	(1)		
\boldsymbol{B} is not correct because K_{c} is wrong				
\boldsymbol{C} is not correct because as the ΔH expressions are				
wrong			\quad	
:---				

Question	Answer	Mark
Number	6. The only correct answer is C	(1)
$\mathbf{6}$	\boldsymbol{A} is not correct because the water is still neutral	
	\boldsymbol{B} is not correct because the water is still neutral	
	D is not correct because the two concentrations are equal	

Question Number	Answer	Mark
$\mathbf{7}$	7. The only correct answer is B	(1)
	\boldsymbol{A} is not correct because an amide forms	
	\boldsymbol{C} is not correct because the solution is strongly acidic	
	\boldsymbol{D} is not correct because the ester is wrong	

Question	Answer	Mark
Number	8. The only correct answer is D	(1)
A is not correct because they do not explain the lack of optical activity	\boldsymbol{B} is not correct because they do not explain the lack of optical activity	\boldsymbol{C} is not correct because it is incorrect

Question Number	Answer	Mark
$\mathbf{9}$	9. The only correct answer is B	(1)
	\boldsymbol{A} is not correct because an excess of water is used	
\boldsymbol{C} is not correct because the gaseous salt is not used		
D is not correct because the gaseous salt is not used		

Question Number	Answer	Mark
$\mathbf{1 0}$	10. The only correct answer is B A is not correct because lattice energies are always negative C is not correct because the enthalpy change of hydration is not positive D is not correct because the enthalpy change of hydration is not positive	(1)

Question Number	Answer	Mark
$\mathbf{1 1}$	11. The only correct answer is A B is not correct because this is not the correct reason for hydrogenating vegetable oils for low-fat spreads	(1)
C is not correct because this is not the correct reason for hydrogenating vegetable oils for low-fat spreads	D is not correct because this is not the correct reason for hydrogenating vegetable oils for low-fat spreads	

Question Number	Answer	Mark
$\mathbf{1 2}$	$\mathbf{1 2 .}$ The only correct answer is A	(1)
	\boldsymbol{B} is not correct because is not a true statement	
\boldsymbol{C} is not correct because is not a true statement		
\boldsymbol{D} is not correct because is not a true statement		

Question Number	Answer	Mark
$\mathbf{1 3}$	13. The only correct answer is B \boldsymbol{A} is not correct because this is are all less polar so would take less time	(1)
\boldsymbol{C} is not correct because this is are all less polar so would take less time	D is not correct because this is are all less polar so would take less time	

Question Number	Answer	Mark
$\mathbf{1 4 (a)}$	$\mathbf{1 4 (a) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$ \boldsymbol{A} is not correct because the compound is Z	(1)
	B is not correct because the compound is Z \boldsymbol{C} is not correct because the hydroxyl group is not in the 7 position	

Question Number	Answer	Mark
$\mathbf{1 4 (b)}$	$\mathbf{1 4 (b) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$	(1)
	\boldsymbol{A} is not correct because m/e are all wrong	
\boldsymbol{C} is not correct because m/e are all wrong		
\boldsymbol{D} is not correct because m / e are all wrong		

Question Number	Answer	Mark
$\mathbf{1 5}$	15. The only correct answer is D	(1)
	B is not correct because they are addition polymers	\boldsymbol{C} is not correct because because it is formed from two different monomers

TOTAL FOR SECTION A = 20 MARKS

Section B

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Reject } & \text { Mark } \\
\hline \mathbf{1 6 (a) (i)} & \begin{array}{l}\text { Grind the reactant(s) together (using } \\
\text { a pestle and mortar) } \\
\text { OR } \\
\text { Use powdered reactants } \\
\text { OR } \\
\text { raising } \\
\text { temperature } \\
\text { Change in } \\
\text { pressure }\end{array} & \text { (1) } \\
& \begin{array}{ll}\text { Stir/mix (the reactants together) } \\
\text { OR }\end{array}
$$ \& \begin{array}{l}Addition of

product

Removal of

reactants\end{array} \& Dissolve\end{array}\right]\)| Add a few drops of water |
| :--- |
| ALLOW |
| dampen with water |
| IGNORE |
| Increase surface area
 Make solid particles smaller
 Add a catalyst |

Question Number	Correct Answer	Reject	Mark
16(a)(ii)	Moist/damp red litmus turns blue		(1)
	ALLOW		
	moist/damp universal indicator paper turns blue ALLOW UI for universal indicator		
	OR (Glass rod dipped in) concentrated HCl gives white smoke / (dense) white fumes	Steamy /misty fumes/ ppt	
	ALLOW (Pass gas into) HCl gas/fumes		
IGNORE (white) solid / ammonium chloride / $\mathrm{NH}_{4} \mathrm{Cl}$			

Question Number	Correct Answer	Reject	Mark
16(b)(i)	$\begin{aligned} & +202.9+2 \times 192.3=+587.5 \\ & -[(99.7+2 \times 94.6)(=-288.9)] \\ & =+298.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ Correct answer with no working 3 M1 All correct values from Data booklet (1) M2 Both multiples M3 Correct numerical answer with sign and units No multiples gives +200.9 1×192.3 gives +106.3 1×94.6 gives +393.2 TE at each stage IGNORE SF Use of enthalpies of formation and other strange calculations using standard entropies of elements enables M2 and M3.		(3)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (b) (i i) ~}$	Sign is positive as expected, as solids react to form a gas (and solid)	1 mole of gas forms	(1)
	ALLOW		
Yes because a gas is formed	TE if b(i) is negative, then allow not as expected with same reason IGNORE Disorder increases		

Question Number	Correct Answer	Reject	Mark
16(c)(i)	$\begin{align*} & \text { M1 } \Delta S^{\ominus}{ }_{\text {total }}=\Delta S^{\ominus}{ }_{\text {system }}+\Delta S_{\text {surroundings }}^{\ominus} \\ & \Delta S^{\ominus}{ }_{\text {surroundings }}=\Delta S^{\ominus}{ }_{\text {total }}-\Delta S^{\ominus}{ }_{\text {system }} \\ &=227.5-298.6 \\ &=-71.1\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1}\\ & \Delta S^{\ominus}{ }_{\text {surroundings }}=-\frac{\Delta H^{\ominus}}{\mathrm{T}} \\ & \Delta H^{\ominus}=-\mathrm{T} \Delta S^{\ominus}{ }_{\text {surroundings }} \\ &=-(-71.1 \times 298) \\ &=+21187.8 / 21200 \mathrm{~J} \mathrm{~mol}^{-1} /+21.2 \mathrm{~kJ} \\ & \mathrm{~mol}^{-1} \end{align*}$ M2 Final value M3 Final sign and unit Fully correct answer with no working 3 Accept all SF except one ALLOW TE from $b(i)$ and internal errors 200.9 gives (+)26.6 gives - 7.2968 etc 106.3 gives (+)121.1 gives -36.1176 etc 393.2 gives -165.7 gives +49.768 etc Using $\Delta H^{\ominus}=-\mathrm{T} \Delta S^{\ominus}$ total Gives $\Delta H^{\ominus}=-67.795 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores (1)		(3)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (c) (i i)}$	The temperature would fall and as the reaction is endothermic/energy absorbed from surroundings $/ \Delta H^{\ominus}$ is positive	(1)	
	ALLOW		
TE from sign of c(i)			

(Total for Question 16 = 10 marks)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (a) (i)}$	$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}+\mathrm{H}^{+}+\mathrm{I}^{-}$ OR $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}+\mathrm{HI}$		(1)
	OR		
	Organic product may be given as $\mathrm{CH}_{2} \mathrm{ICOCH}$ 3		
ALLOW			
Extra H^{+}on each side			
H^{+}over the arrow			
IGNORE di and tri substituted products			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (a) (i i) ~}$	$\mathrm{H}^{+} /$HI produced / a product and catalyses the reaction	Temperature changes Exothermic reaction	(1)
	OR the reaction is self-catalysing / autocatalytic	IGNORE References to mechanism	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (b) (i)}$	Triiodomethane/iodoform/CHI	(1)	$\mathrm{CH}_{3} \mathrm{I}$

Question Number	Correct Answer	Reject	Mark	
$\mathbf{1 7 (b) (i i) ~}$	A (pale) yellow precipitate	(1)	Fizzing/ Bubbling	(2)
	ALLOW solid / crystals for precipitate	fumes	(1)	
Antiseptic smell IGNORE Strong smell Specified colour of iodine solution fades etc				

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (c) (i)}$	Lithium tetrahydridoaluminate((III)) reacts with /reduces water / is oxidised by water (to form hydrogen)		(2)
	IGNORE solubility arguments (Dry) ethoxyethane/(diethyl) ether should be used	ALLOW Any named ether	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (c) (i i)}$		OH	(1)
	OR alkoxide ion skeletal formula with charge OH can point up or down, or be on one of three downward bonds IGNORE structural/displayed formulae ALLOW various bond angles and -O-H		

Question Number	Correct Answer	Reject	Mark
17(d)(i)	 Notice the $\mathrm{N}=\mathrm{C}$ double bond must be shown ALLOW displayed or part-displayed formulae IGNORE bond angles		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (d) (i i) ~}$	Test for a carbonyl compound OR Test for aldehydes and ketones ALLOW carbonyl group	(1)	(2)
	IGNORE Just C=O Identification of a specific carbonyl compound (from melting temperature of derivative and comparison with Data booklet value)	ALLOW To form a solid (compound) so that its melting temperature can be measured OR To prepare a derivative	(1)

Question Number	Correct Answer	Reject	Mark
17(e)(i)	 All bonds must be shown IGNORE bond angles 2-hydroxy-2-methylpropa(n)(e)nitrile ALLOW 2-methyl-2-hydroxypropa(n)(e)nitrile 2,2-hydroxymethylpropa(n)(e)nitrile Hydroxyl and hydroxo are acceptable alternatives to hydroxy IGNORE		(2)

	Correct Answer					Reject	Mark

(Total for Question 17 = 22 marks)

Question Number	Correct Answer	Reject	Mark
18(a)(i)	Observation mark depends on correct test Any two from Fehling's/Benedicts solution Red precipitate forms IGNORE qualifiers e.g. brown, orange. Tollens' reagent/ammoniacal silver nitrate Silver mirror OR black/grey ppt forms Acidified sodium/potassium dichromate(VI) ALLOW $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ Green/ Blue solution forms	Turns red Other qualifiers	(4)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8 (a) (i i) ~}$	Oxidation/redox	Reduction Reduction/redox Displacement	(1)
	ALLOW	Nucleophilic substitution	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8 (b) (i) ~}$	$\mathrm{CH}_{3} \mathrm{CH}$ 2 COOH		(1)
	ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$		
	IGNORE skeletal/displayed formulae unless incorrect	Incorrect additional skeletal or displayed formulae	

Question Number	Correct Answer	Reject	Mark
18(b)(ii)	Step 1 Phosphorus(V) chloride / phosphorus pentachloride / phosphorus(III) chloride / phosphorus trichloride / thionyl chloride	(2)	
	ALLOW	Recognisable spelling e.g. phosphorous (1)	Additional incorrect formulae (this could happen twice)
IGNORE Correct formulae PCl / SOCl			
Step 2 Propan-1-ol / 1-propanol	Propanol		
IGNORE Correct formula	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8 (b) (i i i) ~}$	(Both) the reaction(s) in b(ii) go(es) to completion / not an equilibrium		(1)
	OR		
	The one step process is an equilibrium		
IGNORE			
	Reversible/irreversible Atom economy		

Question Number	Correct Answer	Reject	Mark
*18(c)(i)	M1 CH ${ }_{(\mathrm{A}) 3} \mathrm{CH}_{(\mathrm{B}) 2} \mathrm{CH}_{(\mathrm{C})} \mathrm{O}$ Three proton environments identified M2 Relative areas $3(A), 2(B), 1(C)$ M3 Triplet(A), quintuplet(B), triplet(C) ALLOW non-standard terms e.g. pentuplet / cinquplet / pentet / 5 splits / 5 peaks for quintuplet IGNORE Chemical shifts COMMENT If propanoic acid chosen M2 and M3 may be awarded		(3)

Question Number $\boldsymbol{* 1 8 (c) (i i) ~}$	Correct Answer	Reject	Mark
	Only one peak ALLOW One singlet peak But not just 'one singlet' (without the word peak)	(2)	
	All hydrogens / protons in the same environment	(1)	

Question Number	Correct Answer	Reject	Mark		
*18(c)(iii)	C=O at 1740-1720 $\left(\mathrm{cm}^{-1}\right)$ aldehyde (1)		(3)		
	C-H aldehyde at 2775-2700/2900-2820 (1) $\left(\mathrm{cm}^{-1}\right)$ C=O at lower value/1700-1680 $\left(\mathrm{cm}^{-1}\right)$ ketone	OR No corresponding C-H (aldehyde) absorption for ketone Two or three correct values linked to correct compounds with no bonds mentioned 1 max	(1)		
IGNORE other bonds and peaks				\quad	
:---					

(Total for Question 18 = 17 marks)
TOTAL FOR SECTION B = 49 MARKS

Section C

Question Number	Correct Answer	Reject	Mark
19(a)(i)			(2)
	$\begin{aligned} & {\left[\mathrm{H}_{2} \mathrm{o}_{2}\right]} \\ & / \mathrm{mal} \alpha \mathrm{dm}^{3} \end{aligned}$		
	$0.2 \times$		
	$0.5 \text { - }$		
	9n $\quad \leftarrow 3700 \mathrm{~s} \rightarrow \leftarrow 33008 \rightarrow$		
	Axes, labels (including units) and graph to cover at least half the paper in each direction		
	[] must be placed around hydrogen peroxide		
	Units should follow a / but may be in brackets instead		
	Points and smooth curve		
	Check there are six points plotted		
	Check last point is correctly plotted		
	Non-linear scale scores zero		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (a) (i i)}$	M1 $3400-3800 / 3.4-3.8 \times 10^{3}(\mathrm{~s})$	(1)	
M2 $3200-3600 / 3.2-3.6 \times 10^{3}(\mathrm{~s})$	(1)		
	Only penalise missing 10^{3} once If no working shown on graph, max (1) Minimum working is 2 perpendiculars dropped to x axis from graph		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (a) (i i i) ~}$	First order (1)		(2)
	Constant / similar / the same half-life		
ALLOW Phrases like 'literally the same' even if this does not apply to their numbers	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (b) (i)}$	So that the concentration is proportional to volume IGNORE		(1)
'If the volume changes the concentration changes' References to fair test and controlling variables.			

Question Number	Correct Answer	Reject	Mark
19(b)(ii)	The rate does not alter significantly /is constant during the time of its measurement / during the reaction ALLOW During this time / experiment the graph is approximately linear OR	(1)	
	Initial gradient of the concentration time graph is constant OR Initial rate is constant IGNORE Temperature comments Rate proportional to $1 / \mathrm{t}$		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (b) (i i i) ~}$	M1 Iodide - order 1 (1) M2 as concentration decreases, rate decreases by the same factor		(3)
	OR (Run 3 \rightarrow 2) [I-] doubles, rate doubles (1) M3 Hydrogen ion - order 0 and As rate is unaffected by hydrogen ion concentration OR (Run 5 $\rightarrow 4)\left[\mathrm{H}^{+}\right]$doubles rate is constant (1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (b) (i v)}$	Rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]\left(\left[\mathrm{H}^{+}\right]^{0}\right)$		(1)
	ALLOW		
	R for rate		
$[\mathrm{KI}]$ and $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$			
	ALLOW any order wrt $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$		
	TE from (b)(iii)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (b) (v)}$	$0.1 \times 3 / 12=0.025\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW TE on (b)(iv)		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9 (b) (v i)}$	$\frac{1.06 \times 10^{-4}}{0.025 \times 0.025}$ $=0.1696 / 0.170 / 0.17 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ If $0.03 \mathrm{~mol} \mathrm{dm-3} \mathrm{in} \mathrm{(b)(v)}$ $\mathrm{k}=0.1178 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Value (1) Unit (1) ALLOW TE on (b)(iv) and (b)(v) for k value and units IGNORE SF except 1	(2)	

Question Number	Correct Answer	Reject	Mark
19(c)(i)	$\begin{align*} \text { Gradient } & =\frac{-2.25-(-4.55)}{(3.06-3.35) \times 10^{-3}} \\ & =-7931 \ldots(\mathrm{~K}) \tag{1} \end{align*}$ Correct value with sign Allow range - 7600 to -8000 (K) $\begin{equation*} E_{\mathrm{a}}=8.31 \times(-7931 \ldots) \tag{1} \end{equation*}$ TE on candidate value for gradient $=-65.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Correct value with + or - sign, and units Ignore SF except 1SF ALLOW Values within range 63.0 to $66.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ providing graph read correctly	No sign	(3)

Question Number	Correct Answer	Reject	Mark
*19(c)(ii)			(3)
	M1 x axis (kinetic) energy or clearly marked with E_{a} y axis fraction/number of molecules / particles or left blank M2 Shape of graph fully correct, starting at zero, approaching x axis asymptotically / allow horizontal Please note the following examples:	Curve clearly rising at the end	
	Allowed		
	(1)		

	M3 A greater proportion of / more molecules have energy greater than the activation energy when catalyst is present	
A greater proportion of / more molecules have energy sufficient / enough to react when catalyst is present		
OR This can be shown on the graph, by labels and lines etc.	(1)	

TOTAL FOR SECTION C = 21 MARKS
TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

